Least Area Incompressible Surfaces in 3-Manifolds
نویسنده
چکیده
Let M be a Riemannian manifold and let F be a closed surface. A map f: F---,M is called least area if the area of f is less than the area of any homotopic map from F to M. Note that least area maps are always minimal surfaces, but that in general minimal surfaces are not least area as they represent only local stationary points for the area function. The existence of least area immersions in a homotopy class of maps has been established when the homotopy class satisfies certain injectivity conditions on the fundamental group [18, 17]. In this paper we shall consider the possible singularities of such immersions. Our results show that the general philosophy is that least area surfaces intersect least, meaning that the intersections and self-intersections of least area immersions are as small as their homotopy classes allow, when measured correctly. One should note that evidence supporting this view had been found by Meeks-Yau in their embedding theorems for minimal disks and 2-spheres [13, 143 . Our main result asserts that if a least area immersion is homotopic to an embedding, then it has no self-intersections, which clearly exemplifies the above philosophy. The precise result is the following.
منابع مشابه
The Existence of Least Area Surfaces in 3-manifolds
This paper presents a new and unified approach to the existence theorems for least area surfaces in 3-manifolds. Introduction. A surface F smoothly embedded or immersed in a Riemannian manifold M is minimal if it has mean curvature zero at all points. It is a least area surface in a class of surfaces if it has finite area which realizes the infimum of all possible areas for surfaces in this cla...
متن کاملFrom Normal Surfaces to Normal Curves to Geodesics on Surfaces
Motivated by the topological theory of normal surface we give in this paper a complete study of the relations between geodesic curves and normal curves embedded in a triangulated Riemannian surface. Normal surface theory is a topological piecewise linear (p` for short) counterpart of the differential geometric theory of minimal surfaces. This theory studies the ways surfaces intersect with a gi...
متن کاملClosed essential surfaces in hyperbolizable acylindrical 3-manifolds
We show that a compact hyperbolizable acylindrical 3-manifold with non-empty incompressible boundary, in which every boundary component has genus at least two, necessarily contains a closed immersed essential surface.
متن کاملProblems around 3–manifolds
This is a personal view of some problems on minimal surfaces, Ricci flow, polyhedral geometric structures, Haken 4–manifolds, contact structures and Heegaard splittings, singular incompressible surfaces after the Hamilton–Perelman revolution. We give sets of problems based on the following themes; Minimal surfaces and hyperbolic geometry of 3–manifolds. In particular, how do minimal surfaces gi...
متن کاملMinimal Surfaces in Geometric 3-manifolds
In these notes, we study the existence and topology of closed minimal surfaces in 3-manifolds with geometric structures. In some cases, it is convenient to consider wider classes of metrics, as similar results hold for such classes. Also we briefly diverge to consider embedded minimal 3-manifolds in 4-manifolds with positive Ricci curvature, extending an argument of Lawson to this case. In the ...
متن کامل